
Transformational Software Evolution by Assertions
Dr. Tom Mens*

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussel - Belgium

Tom.Mens@vub.ac.be

ABSTRACT
This paper explores the use of software transformations as a
formal foundation for software evolution. More precisely, we
express software transformations in terms of assertions
(preconditions, postconditions and invariants) on top of the
formalism of graph rewriting. This allows us to tackle scalability
issues in a straightforward way. Useful applications include:
detecting syntactic merge conflicts, removing redundancy in a
transformation sequence, factoring out common subsequences,
etc.

1. INTRODUCTION
Software evolution is one of the most important problems in
software engineering, because of its inherent complexity and
because of the lack of a solid formal foundation. In an attempt to
provide such a foundation, this paper elaborates on the paradigm
of transformational software evolution. In this paradigm,
evolution is achieved by means of explicit software
transformations that can be manipulated directly. This gives rise
to a wide range of interesting ways to improve support for
evolution.

One area of interest lies in support for merging parallel evolutions
of the same software [3, 9]. Software merging is needed when
separate lines of software development are carried out in parallel
and have to be merged at regular intervals. Because this is a
complex time-consuming process, automated support tools are
essential. Unfortunately, most existing merge tools either lack
flexibility or expressive power. To counter this problem, we need
to establish the formal foundations of software merging first. For
this purpose, graph rewriting appears to be a promising
lightweight formalism [11].

Software transformations are also useful to provide support for
refactoring application frameworks in a behaviour-preserving
way. Refactorings improve the design or structure of object-
oriented frameworks, making them more robust towards evolution
[13, 14, 16].

For merging as well as refactoring, there is a need to express
evolution transformations in a scalable way. Indeed, in practice,
the software that is being developed as well as the software
transformations that are applied to it can be quite large.

A promising formal approach which has not yet been thoroughly
explored is the use of assertions for expressing software

* Postdoctoral Fellow of the Fund for Scientific Research – Flanders

(Belgium) (F.W.O.-Vlaanderen)

transformations. In [16], pre- and postconditions were used to
express refactoring transformations. In [11], pre- and
postconditions were attached to software transformations to detect
merge conflicts. This paper performs a more thorough
investigation, and shows how assertions allow us to express
software transformations in a uniform and scalable way.

2. CONDITIONAL GRAPH REWRITING
We represent software artifacts (whether it be analysis,
architecture, design or implementation artifacts) in a uniform way
as graphs [10]. This enables us to use the powerful formalism of
conditional graph rewriting [4, 5, 6, 11] for representing
evolution transformations.

2.1 Graphs and Graph Rewriting
Graphs provide a simple yet expressive formalism for
representing software. Nodes in a graph can represent any kind of
software entity (classes, modules, objects, methods, variables,
statements, etc...), while edges express dependencies between
these entities (data-flow, control-flow, containment relationships,
etc...). Each node and edge has a label and a type attached to it.

Definition. Let NodeID be the set of node identifiers, EdgeID the
set of edge identifiers, Label the set of node and edge labels, and
Type the set of node and edge types. A graph G is a tuple (V, E,
source, target, label, type) consisting of a node set V ⊆ NodeID
and an edge set E ⊆ EdgeID with V∩E = ∅ ; functions
source: EÆV and target: EÆV; and functions label: V∪ EÆLabel
and type: V∪ EÆType.

For example, in graph R depicted in Figure 1, V={a,c}, E={f},
label(a)=area, type(a)=operation, label(f)=uses, type(f)=uses,
source(f)=a and target(f)=c. We distinguish types from labels by
writing types in boldface.

Since graphs represent software artifacts, evolution of these
artifacts can be expressed by graph rewriting. Because we will
manipulate graph rewritings explicitly, they should be decoupled
from the actual graphs to which they are being applied. This is
achieved by introducing the notion of a graph production
P: LÆR that transforms a source graph L into a target graph R. In
order to apply this production to an initial graph G, a match
m: LÆG is needed to specify which part of the initial graph G is

3 Primitive productions Relabel and Retype can be used for nodes as well

as edges. We often use the notation RelabelN and RetypeN (resp.
RelabelE and RetypeE) to stress that we are changing the label or type
of a node (resp. edge).

being transformed. Together, P and m uniquely define a graph
rewriting G ⇒ P,m H. This graph rewriting also induces a co-match
m*: RÆH that specifies the embedding of R in the result graph H.

As an example, consider the graph rewriting of Figure 1. The
match m: LÆG maps node a of L on node 2 of G. The co-match
m*: RÆH additionally maps node c of R on node 3 of H, and
edge f of R on edge f of H.

P

m

Circle
c lass

1

sur face
at t r ibute

2
e

h a s - a

G H

Circle
c lass

1

area
o p e r a t i o n

2
e

h a s - a
f

radius
at t r ibute

3

uses

u s e s

sur face
at t r ibute

a

L

area
o p e r a t i o n
a

radius
at t r ibute

c
f

uses

u s e s

R

Figure 1: An example of a graph rewriting

2.2 Assertions
Assertions are well established in the software community as a
formal way to specify the behaviour of programs [7, 12]. Three
kinds of assertions are distinguised. Preconditions must be
satisfied for a certain operation to be applicable. Postconditions
are guaranteed to be true after the operation has been applied.
Invariants are assumptions that remain unaltered by the operation.

Another distinction is made between positive assertions, that
indicate the presence of a certain property, and negative assertions
that indicate its absence. Table 1 presents the positive assertions
that can be expressed in our graph formalism, together with the
notation used throughout this paper. Negative assertions are
precisely the opposite: they express the absence of some entity in
a graph, and are denoted by a minus sign. E.g., –source(E,N)
expresses that edge E does not have node N as its source.

Table 1: Positive assertions

Positive assertion Notation

A node or edge with identifier Id should be
present

+Id

Edge E should have node N as its source +source(E,N)

Edge E should have node N as its target +target(E,N)

A node or edge Id should have label L +label(Id,L)

A node or edge Id should have type T +type(Id,T)

We also want to express more general constraints like: "node N
does not have any outgoing edges" or "node N is the target of at
least one edge". The former constraint is expressed as -
source(*,N), and the latter as +target(*,N). All positive wildcard
assertions used in this paper are enumerated in Table 2. Negative
wildcard assertions are merely the negation of their positive
equivalents. For example, -source(*,N) is the negation of
∃ E ∈ EdgeID: source(E) = N, i.e., ∀ E ∈ EdgeID: source(E) ≠ N

Table 2: Positive wildcard assertions

Positive assertion Notation

∃ E ∈ EdgeID: source(E) = N +source(*,N)

∃ E ∈ EdgeID: target(E) = N +target(*,N)

∃ N ∈ NodeID: source(E) = N +source(E,*)

∃ N ∈ NodeID: target(E) = N +target(E,*)

∃ L ∈ Label: label(Id) = L +label(Id,*)

∃ T ∈ Type: type(Id) = T +type(Id,*)

Some assertions automatically imply other assertions. For
example, the absence of a node implies the absence of any label or
type for this node, as well as the absence of any incoming or
outgoing edges for this node. These implicit assertions are called
derived assertions and are mentioned in Table 3. Whenever we
specify a set of assertions S, we assume that all derived assertions
are also included in this set, even if they are not specified
explicitly.

Table 3: Derived assertions

Assertion Derived Assertions

-N -label(N,*), -type(N,*), -source(*,N), -
target(*,N)

-E -label(E,*), -type(E,*),
-source(E,*), -target(E,*)

+source(E,N) +E, +N

+target(E,N) +E, +N

+label(Id,L) +Id

+type(Id,T) +Id

2.3 Conditional Graph Productions
The main distinction between our approach and the “common”
use of assertions [7, 12, 15] is that we do not use assertions to
attach behavioural constraints to programs. Instead, we use
assertions to represent evolution transformations (as in [11, 16]).
In other words, we attach assertions to graph productions rather
than to graphs themselves.

Each assertion can be used either as precondition, postcondition
or invariant of a graph production P. The sets of all these
assertions are denoted by Pre(P), Post(P) and Inv(P) respectively.
We also use the shorthand notations Before(P) = Pre(P) ∪ Inv(P)
and After(P) = Post(P) ∪ Inv(P).

Given a graph rewriting G ⇒ P,m H, one can easily write an
algorithm that calculates the minimal set of assertions that
determines the production P. For example, in Figure 1 we can
identify the following minimal assertions:

Pre(P) = {-c, -f, +label(a,surface), +type(a,attribute)}

Inv(P) = {+a, -source(*,c)}

Post(P) = {+label(a,area), +type(a,operation), +c,
+label(c,radius), +type(c,attribute), +f, +source(f,a),
+target(f,c), +label(f,uses), +type(f,uses)}

If necessary, extra assertions can be added to these sets in order to
restrict the applicability of production P to a smaller set of initial
graphs. For example, if we would impose the extra invariant -

target(*,a), P would not be applicable anymore to the graph G of
Figure 1.

Following the notation of Perry [15], the assertions for production
P are depicted as ellipses in Figure 2, while P is represented as a
grey rectangle. Preconditions appear on the upper horizontal side
of the rectangle, postconditions on the lower horizontal side, and
invariants on the vertical sides. For positive assertions, the + sign
is omitted in the figures. When they are needed, derived assertions
are depicted by dashed ellipses. Finally, we abbreviated the last
five postconditions of P to (f,a,c,uses,uses).

P

label(a,surface) type(a,attribute)-f

label
(a,area)

type
(a,operation)

label
(c,radius)

type
(c,attribute)

(f,a,c,
uses,uses)

-c

-source(*,c)

a

c

Figure 2: Graphical notation of a conditional production

[11] expressed every possible graph transformation in terms of a
number of primitive productions that are sufficient to express any
kind of change to a graph. For example, AddEdge(f,a,c,uses,uses)
adds an edge f from a to c with label uses and type uses. Table 5
shows all primitive productions and their corresponding
assertions.3

Table 5: Primitive graph productions

Graph
Production

Pre Inv Post

AddNode
(N,L,T)

-N -source(*,N)
-target(*,N)

+N
+label(N,L)
+type(N,T)

AddEdge
(E,Ns,Nt,L,T)

-E +Ns
+Nt

+E
+label(E,L)
+type(E,T)
+source(E,Ns)
+target(E,Nt)

DropNode
(N)

+N -source(*,N)
-target(*,N)

-N

DropEdge
(E,Ns,Nt)

+E
+source(E,Ns)
+target(E,Nt)

+Ns
+Nt

-E

Relabel
(Id,L1,L2)

+label(Id,L1) +Id +label(Id,L2)

Retype
(Id,T1,T2)

+type(Id,T1) +Id +type(Id,T2)

3. PRODUCTION SEQUENCES

3.1 Well-formedness
A production sequence is a sequence of graph productions that
can be applied successively. It is well-formed if the assertions
imposed by a production in the sequence do not contradict
assertions imposed by earlier productions.

Definition. A production sequence P1; P2; ..; Pn is well-formed if
∀ Ak ∈ Before(Pk) with k ∈ {2..n}: if (∃ Ai ∈ After(Pi) with i<k
such that Ai contradicts Ak) then (∃ Aj ∈ After(Pj) with i<j<k such
that Aj = Ak). Otherwise, the production sequence is ill-formed.

Table 6 mentions all possible contradicting assertions. For
example, the sequence P1; P2 = AddNode(a,surface,attribute);

AddNode(a,area,attribute) is ill-formed because +a ∈ After(P1)
contradicts -a ∈ Before(P2). The sequence P1; P2; P3 =
AddNode(a,l1,t1); RelabelN(a,l1,l2); RelabelN(a,l2,l3) is well-
formed because the contradiction between +label(a,l1) ∈ After(P1)
and +label(a,l2) ∈ Before(P3) is absorbed by +label(a,l2) ∈
After(P2).

Table 6: Contradicting assertions

Assertion Contradicts where

+A -A +A is some arbitrary
positive assertion

+source(E,N1) +source(E,N2) N1 ≠ N2

+target(E,N1) +target(E,N2) N1 ≠ N2

+label(Id,L1) +label(Id,L2) L1 ≠ L2

+type(Id,T1) +type(Id,T2) T1 ≠ T2

3.2 Detecting Syntactic Merge Conflicts
Ill-formed production sequences can be used to detect syntactic
merge conflicts. These typically occur when different software
developers are making changes to the same software in parallel,
and these changes need to be merged.

Using the formalism of conditional graph rewriting, software
merging can be formalised [11] by the notion of parallel
independence [5]. Intuitively, two graph rewritings are parallel
independent if they can be sequentialised in any order without
changing the end result. Unfortunately, this definition does not
specify what to do when two graph rewritings cannot be merged
(read: sequentialised). If this is the case, we say that they give rise
to a syntactic conflict. For example, suppose that graph G
contains a node, and production P1 removes this node while P2
independently adds an edge originating from this node. This
yields a syntactic conflict since trying to merge both parallel
evolutions would lead to an edge without a source.

Definition. Two graph rewritings G ⇒ P1,m1 H1 and G ⇒ P2,m2 H2
lead to a syntactic conflict if the production sequence P1; P2 (or
P2; P1) is ill-formed.

By comparing the different kinds of assertions that hold for P1 and
P2, we can easily determine when a syntactic conflict occurs. It
suffices to find a contradicting assertion between After(P1) and
Before(P2), using Table 6. For example, for the primitive
productions of Table 5 we identify the following syntactic
conflicts:

• Prohibited node removal if -v ∈ After(P1) and +v ∈
Before(P2). This is for example the case if P1 = DropNode(v)
and P2 = AddEdge(e,v,w,l,t). One cannot add an edge with a
certain source node if this node has been removed before.
Prohibited edge removal is defined similarly.

• Dangling source if +source(e,v) ∈ After(P1) and -
source(e,v) ∈ Before(P2). This is for example the case if P1 =
AddEdge(e,v,w,l,t) and P2 = DropNode(v). One cannot
remove a node that still has outgoing edges. Dangling target
is defined similarly.

• Prohibited node introduction if -v ∈ Before(P2) and +v ∈
After(P1). Prohibited edge introduction is defined similarly.

• Prohibited relabeling if +label(id,l1) ∈ After(P1) and
+label(id,l2) ∈ Before(P2). Prohibited retyping is defined
similarly.

For approaches that can detect semantic conflicts rather than
syntactic conflicts, we refer to [1, 2, 8].

3.3 Dependencies
Between the productions in a sequence we can determine
dependencies based on which assertions are satisfied by assertions
of productions earlier in the sequence. These dependencies will be
used to address scalability issues in section 4.

Definition. Let P1; P2; ..; Pn be a well-formed production
sequence and i<j. An assertion Aj ∈ Before(Pj) is satisfied by an
assertion Ai ∈ After(Pi) if Aj = Ai.

We can distinguish four satisfaction dependencies:

• Ai ∈ Post(Pi) and Aj ∈ Pre(Pj): Pj modifies (or removes) an
entity that was already modified (or introduced) by Pi. For
example, Pj = DropEdge(e,b,c) depends on Pi =
AddEdge(e,b,c,uses,uses) because Pj removes the edge e that
was introduced by Pi. This is detected by +e ∈
Post(Pi) ∩ Pre(Pj)

• Ai ∈ Post(Pi) and Aj ∈ Inv(Pj): Pj relies on an entity that is
modified by Pi. For example, Pj = AddEdge(e,b,c,uses,uses)
depends on Pi = AddNode(c,radius,attribute) because +c ∈
Post(Pi) ∩ Inv(Pj)

• Ai ∈ Inv(Pi) and Aj ∈ Pre(Pj): Pj modifies an entity that was
relied on by Pi. For example, Pj = DropNode(b) depends on
Pi = DropEdge(e,b,c)

• Ai ∈ Inv(Pi) and Aj ∈ Inv(Pj): Pj relies on the same entity as
Pi. For example, Pj = RetypeN(a,attribute,operation) depends
on Pi = RelabelN(a,surface,area)

The first three satisfaction dependencies are strong dependencies
because changing the order of Pi and Pj yields an ill-formed
production sequence. For example, we cannot add an edge
between two nodes if one of these nodes is not yet present.
Graphically, strong dependencies are represented by a solid line
from Aj to Ai.

The fourth dependency is a weak dependency, because Pi and Pj
can still be commuted without affecting the end result. For
example, it is irrelevant whether we first relabel a node and then
retype it or vice versa. Weak dependencies are represented by a
dotted line from Aj to Ai.

Figure 4 shows all satisfaction dependencies in a sequence of
three primitive productions. There is a strong dependency from
the invariant +b of the second production to the postcondition +b
of the first production, and from the precondition type(b,attribute)
of the second production to the postcondition type(b,attribute) of
the first. Finally, there is a weak dependency from the invariant
+b of the third production to the same invariant of the second
production.

A d d N(b,per imeter,attribute)

label(b,perimeter)b type(b,attribute)

A d d E(e,b,c,uses,uses)

-e

label
(e,uses)

e
target
(e,c)

source
(e,b)

b c
type

(e,uses)

Re typeN(b,attribute ,operation)

type(b,attribute)

b

type(b,operation)

-b

-source(*,b)
-target(*,b)

Figure 4: An illustration of satisfaction dependencies

Figure 4 also shows another kind of dependency from the
postcondition +source(e,b) of the last production to the invariant
-source(*,b) of the first. In general, some assertions of earlier
productions can become captured by a postcondition of a later
production, meaning that the earlier assertion can be ignored.

Definition. Let P1; P2; ..; Pn be a well-formed production
sequence and i<j. An assertion Aj ∈ Post(Pj) captures an
assertion Ai ∈ After(Pi) if Aj contradicts Ai.

A capture is also a strong dependency in the sense that it
prevents Pi and Pj from being commuted. Graphically, such a
dependency is represented by a dashed line from postcondition Aj
to postcondition (or invariant) Ai. This is illustrated in Figure 4
between +source(e,b) and -source(*,b).

The following complex production sequence illustrates all the
dependencies introduced before:

RelabelN(a,surface,area); AddNode(b,perimeter,attribute);
RetypeN(a,attribute,operation); RetypeN(b,attribute,operation);
AddNode(c,radius,attribute); AddEdge(e,b,c,uses,uses);
AddEdge(f,a,c,uses,uses); DropEdge(e,b,c); DropNode(b)

Figure 7 displays the assertions of each production in the
sequence, together with all dependencies between them. Each
assertion is the source of at most one dependency, that always
points to the closest preceding assertion on which it depends.

-source
(*,c)

RelabelN (a,surface,area)

label(a,surface)

a

label(a,area)

AddN (b,perimeter, attribute)

label(b,per imeter)b type(b,attribute)

RetypeN (a,attribute ,operation)

type(a,attribute)

a

type(a,operation)

AddE(e,b,c,uses,uses)

-e

label
(e,uses)etarget

(e,c)
source
(e,b)

b c
type

(e,uses)

DropE(e,b,c)

source(e,b)

-e

c

etarget(e,c)

DropN(b)
-b

b
-source(*,b)

RetypeN(b,attribute ,operation)

type(b,attribute)

b

type(b,operation)

AddN (c,radius,attribute)

-c

label(c,radius) ctype(c,attribute)

AddE (f,a,c,uses,uses)

-f

label
(f,uses)

f target
(f,c)

source
(f,a)

a

c
type

(f,uses)

b

label(a,surface)

-b

type(a,attribute)

-e

-f

label
(a,area)

type
(a,operation)

label
(c,radius)

type
(c,attribute)

(f,a,c,
uses,uses)

c

a

-b

-c

-target(*,b)

-target(e,c)-source(e,b)

-label(b,*) -type(b,*)

- label(e,*) -type(e,*)

-target(*,b)
-source(*,b)

-target(*,c)
-source(*,c)

Figure 7: Dependencies in a production sequence

4. COMBINING GRAPH PRODUCTIONS
This section illustrates some important ways in which
dependencies between assertions can address scalability issues
when using large evolution sequences.

4.1 Composite Graph Production
A first way to address scalability is by treating complex sequences
in exactly the same way as primitive productions. For example,
the production sequence of Figure 7 can be considered as an
atomic production P, as long as we are able to determine all of its
assertions from the assertions of its constituent productions and
the dependencies between them. The assertions of the so-called
composite production P are calculated as follows:

(1) Identify all preconditions Pre and invariants InvPre that have
no outgoing dependencies. Omit all derived assertions.

(2) Identify all postconditions Post and invariants InvPost that
have no incoming dependencies. Omit all derived assertions.

(3) Calculate the assertions of the composite production P:
Inv(P) = (InvPre ∩ InvPost) ∪ (Pre ∩ Post)
Pre(P) = (InvPre \ InvPost) ∪ (Pre \ Post)
Post(P) = (InvPost \ InvPre) ∪ (Post \ Pre)

In Figure 7, all the assertions in the sets Pre, InvPre, Post and
InvPost of steps (1) and (2) are represented as shaded ellipses.

The actual preconditions, postconditions and invariants of the
composite production P are shown as ellipses on the surrounding
rectangle of Figure 7. For example, Pre(P) = {-target(*,c)} ∪ {-c,
-f, label(a,surface), type(a,attribute)}, but the assertion -
target(*,c) is omitted since it can be derived from -c.

4.2 Simplifying pairs of productions
Another way to address the scalability is by reducing a production
sequence P1; P2; ...; Pn by simplifying or eliminating pairs of
successive5 productions Pi; Pi+1. This is particularly relevant if we
rely on a predefined set of productions (as in Table 5). Two kinds
of simplifications can be distinguished. A pair of successive
productions can be absorbed into a single predefined production,
or the pair is redundant when the constituent productions cancel
each other's effect. In the latter case, the pair can be removed
without changing the overall behaviour of the graph rewriting. For
both situations, a definition and concrete example is presented
below.

Definition. A sequence of two graph productions P1; P2 is
absorbing if there is a predefined graph production P such that
Pre(P) = Pre(P1; P2), Post(P) = Post(P1; P2), and
Inv(P) = Inv(P1; P2)

Figure 8 illustrates an absorbing production pair. Node addition
AddNode(b,perimeter,attribute) followed by node retyping
RetypeN(b,attribute,operation) is absorbed into a single node
addition AddNode(b,perimeter,operation).

-source(*,b)

-target(*,b)

A d d N(b,per imeter,attribute)
-b

label(b,perimeter)b type(b,attribute)

Re typeN(b,attribute ,operation)
type(b,attribute)

b

type(b,operation)

-b

b type(b,operation) label(b,perimeter)

-source(*,b)
-target(*,b)

Figure 8: An absorbing production pair

Definition. A sequence of two graph productions P1; P2 is
redundant if Pre(P1; P2) = ∅ and Post(P1; P2) = ∅ .

With redundant pairs of productions, only the invariant set can be
nonempty. Figure 9 illustrates a redundant production pair P1; P2.
A node b is added and removed again. The resulting composite

5 In section 4.4 we discuss the more complex case where redundant or

absorbing productions do not directly follow one another in the
sequence.

production has an empty set of pre- and postconditions, while
Inv(P1; P2) = {-b}.6 Also note the capture dependencies
originating from -type(b,*) and -label(b,*).

AddN(b,per imeter ,attribute)

-b

label(b,perimeter)btype(b,attribute)

DropN(b)
-b

b

-source(*,b)

-target(*,b)

-type(b,*) -label(b,*)

-source(*,b)

-target(*,b)

Figure 9: A redundant production pair

4.3 Reordering
If two successive productions in a sequence do not have a strong
dependency between them, their order can be changed. When
doing this, we need to modify all involved dependencies
accordingly. This is illustrated in Figure 11 where we changed the
order of the last two productions in the sequence of Figure 4. This
was possible because there is only a weak dependency between
the two productions that are being commuted. The reordered
production sequence has the same overall effect as the original
one because the assertions of the corresponding composite
production are identical in both cases.

A d d N (b,per imeter,attribute)

label(b,perimeter)b type(b,attribute)

A d d E(e,b,c,uses,uses)

-e

label
(e,uses)

e
target
(e,c)

source
(e,b)

b c
type

(e,uses)

Re typeN(b,attribute ,operation)

type(b,attribute)

b

type(b,operation)

-b

-source(*,b)
-target(*,b)

Figure 11: Reordering primitive productions in the sequence

of Figure 4

4.4 Removing Redundancy
Reordering can be used to remove redundant and absorbing
production pairs in a given sequence, even if the involved
productions do not directly follow one another. In this way we can
make the production sequence shorter, thus reducing the amount
of memory required to store a production sequence
(compression); improving the efficiency of algorithms that
manipulate production sequences; making the production
sequence easier to understand; etc…

Instead of giving the details of the redundancy removal algorithm,
we illustrate how it works by means of a nontrivial example.
Removing redundancy in the production sequence of Figure 7
yields the production sequence of Figure 12, containing only 4
instead of the original 9 primitive productions:

6 The assertions -source(*,b), -target(*,b), -type(b,*) and -label(b,*) can

be ignored as they are derived assertions of -b.

RelabelN(a,surface,area)

label(a,surface)

a

label(a,area)

RetypeN(a,attribute,operation)

type(a,attribute)

a

type(a,operation)

AddN(c,radius,attribute)

-c

label(c,radius) ctype(c,attribute)

AddE(f,a,c,uses, uses)

-f

label
(f ,uses)

ftarget
(f,c)

source
(f,a)

a

c

type
(f,uses)

-target(*,c)
-source(*,c)

Figure 12: Final result after redundancy removal

This result is achieved by applying the following steps, starting
from the production sequence of Figure 7:

1. Reorder of RetypeN(a,attribute,operation) and its immediate
successor RetypeN(b,attribute,operation), making
RetypeN(b,attribute,operation) the immediate successor of
AddNode(b,perimeter,attribute).

2. Transform the absorbing subsequence
AddNode(b,perimeter,attribute); RetypeN(b,attribute,operation)
into a single production AddNode(b,perimeter,operation).

3. Reorder of AddEdge(f,a,c,uses,uses) and its immediate
successor DropEdge(e,b,c), making DropEdge(e,b,c) the
immediate successor of AddEdge(e,b,c,uses,uses).

4. Transform the redundant subsequence
AddEdge(e,b,c,uses,uses); DropEdge(e,b,c) into a single trivial
production that only consists of invariants: {-e,+b,+c}.

5. Remove this trivial production, and redirect the dependencies
accordingly.

6. Move the production DropNode(b) to directly behind
AddNode(b,perimeter,operation). This does not require
redirection of any dependencies, since DropNode(b) only depends
on AddNode(b,perimeter,operation).

7. Transform the redundant subsequence
AddNode(b,perimeter,operation); DropNode(b) into a single
trivial production that only consists of invariants: {-b}.

8. Remove this trivial production. This concludes the redundancy
removal, since no absorbing or redundant production pairs
remain.

4.5 Refactoring Common Subsequences
In the context of team development, tool support is essential,
especially when making parallel evolutions or customisations of
the same software artifact. We can identify similarities between
these changes by factoring out all commonalities between the
parallel transformations. This is not only useful for reducing code
duplication, but also during software merging to reduce the
number of merge conflicts.

G
P

H1

H2

Q
G

V P
H1

H2

V
Q

HC

Figure 17: Factoring out commonalities in parallel evolutions

Schematically, the idea is represented in Figure 17. If we have two
parallel productions P and Q that are applied to the same initial
graph G, we can compare their assertions, and construct a new
production C that contains only the common assertions, while the
variable ones are specified in two other productions VP and VQ.

4.6 Undo Mechanism
In an industrial-strength software development environment, it
should be possible to make changes undone selectively, even if
these changes are part of a complex sequence. Suppose we want
to undo only one production in a sequence. We cannot simply
remove the production and reapply the resulting shorter sequence,
because later productions in the sequence may still depend on the
removed one. Therefore, we additionally need to remove all later
productions that strongly depend on the removed production
(either directly or indirectly).

For example, in order to undo AddNode(b,perimeter,attribute) in
the sequence of Figure 7, we also need to undo all its strongly
dependent productions RetypeN(b,attribute,operation),
AddEdge(e,b,c,uses,uses), DropEdge(e,b,c) and DropNode(b).

4.7 Parallelising Independent Subsequences
A final use of dependencies has already been discussed by
Roberts [16]. In order to apply large production sequences in a
more efficient way, they can be split up in parallel subsequences
that can be applied independently from one another. This allows
us to parallelise the process of applying complex transformations
to a graph. It also makes large evolution transformations more
manageable by splitting them up in smaller independent chunks
that are more understandable.

For example, the production sequence of Figure 12 can be
parallelised into the following independent subsequences:

RelabelN(a,surface,area); RetypeN(a,attribute,operation) and

AddNode(c,radius,attribute); AddEdge(f,a,c,uses,uses)

5. RELATED WORK
Perry was one of the first to use assertions for dealing with certain
aspects of software evolution. In [15] he describes a semantic
interconnection model that uses assertions to annotate software
artifacts. This model is used to detect the effects of changes by
recursively determining the assertions that are affected by the
change. In our approach, we do not use assertions for expressing
the behaviour of software artifacts themselves, but to express
semantic dependencies between the evolution transformations
instead.

If we focus on formal support for merging parallel evolutions, our
work is closely related to [9]. Lippe and van Oosterom propose an
operation-based merge technique that uses software
transformations (called operations) to represent evolution, and
detects and resolves merge conflicts using the information
contained in these transformations. Dependency information
between transformations is used to address the issue of scalability,
but assertions are not used to identify the dependencies.

The research in this paper is a logical consequence of the work on
reuse contracts [17]. Mens [10, 11] provides a formalism for
reuse contracts that uses pre- and postconditions to express graph
transformations and relies on formal properties of conditional
graph rewriting [4, 5, 6].

The research of Roberts [16] is also closely related. Pre- and
postconditions are used to express refactoring transformations
(which are usually behaviour-preserving), and some scalability
issues are addressed as well.

6. CONCLUSION
Typed graphs, combined with graph transformations that are
based solely on assertions (i.e., preconditions, postconditions and
invariants) provide a general formalism for software evolution.
Assertions make it easy to detect syntactic merge conflicts
between parallel evolution transformations, and allow us to define
composite graph transformations in an intuitive and
straightforward way. Dependencies between the assertions allow
us to address several scalability issues, such as changing the order
in a transformation sequence, removing redundant transformations
in a sequence, and extracting a common subsequence from two
(or more) given transformation sequences.

The approach seems very promising, but still needs to be
validated in a large-scale case study. Also, the underlying
formalism can be extended in many ways: a notion of subtypes
could be introduced; more complex assertions could be defined;
the productions could be made more generic; etc…

7. REFERENCES
1 V. Berzins, Software Merge: Semantics of Combining

Changes to Programs, ACM Trans. Programming Languages
and Systems, Vol. 16, No.6, 1994, pp. 1875-1903.

2 D. Binkley, S. Horwitz, and T. Reps, Program Integration for
Languages with Procedure Calls, ACM Trans. Softw. Eng.
and Methodology, Vol. 4, No. 1, 1995, pp. 3-35.

3 M. S. Feather. Detecting Interference when Merging
Specification Evolutions. Proc. Int. Workshop Softw.
specification and design, pp. 169-176, ACM Press, 1989.

4 A. Habel, R. Heckel, G. Taentzer. Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae,
Special Issue on Graph Transformations, 26(3,4): 287-313,
IOS Press, June 1996.

5 R. Heckel. Algebraic Graph Transformations with
Application Conditions. Dissertation, Technische Universität
Berlin, 1995.

6 R. Heckel, A. Wagner. Ensuring Consistency of Conditional
Graph Grammars: A Constructive Approach. Lecture Notes
in Theoretical Computer Science 1 (1995), Elsevier Science,
1995.

7 C.A.R. Hoare. An axiomatic approach to computer
programming. Comm. ACM 12(10): 576-580, 583. ACM
Press, October 1969.

8 D. Jackson, D.A. Ladd. Semantic Diff: A Tool for
Summarizing the Effects of Modifications, Int. Conf. Softw.
Maintenance, IEEE Press, 1994.

9 E. Lippe, N. van Oosterom. Operation-based Merging. Proc.
Fifth ACM SIGSOFT Symp. Softw. Development

Environments. ACM SIGSOFT Softw. Eng. Notes, 17(5): 78-
87, ACM Press, 1992.

10 T. Mens. A formal foundation for object-oriented software
evolution. PhD Dissertation, Vrije Universiteit Brussel,
September 1999.

11 T. Mens. Conditional graph rewriting as a domain-
independent formalism for software evolution. Proc. Int.
Agtive ’99 Conference, LNCS 1779: 127-143, Springer-
Verlag, 2000.

12 B. Meyer. Object-Oriented Software Construction, 2nd ed.,
Prentice Hall, 1997.

13 W.F. Opdyke. Refactoring object-oriented frameworks, Ph.D.
Dissertation, University of Illinois at Urbana-Champaign,
Technical Report UIUC-DCS-R-92-1759, 1992.

14 W.F. Opdyke, R.E. Johnson. Creating abstract superclasses
by refactoring, Proc. ACM Computer Science Conference,
pp. 66-73, ACM Press, 1993.

15 D.E. Perry. Software Interconnection Models. Proc. Int. Conf.
Softw. Eng., IEEE Press, 1987.

16 D. Roberts. Practical Analysis for Refactoring. PhD
Dissertation, University of Illinois at Urbana-Champaign,
1999.

17 P. Steyaert, C. Lucas, K. Mens, T. D’Hondt. Reuse Contracts:
Managing the Evolution of Reusable Assets. Proc. OOPSLA
’96, SIGPLAN Notices 31(10): 268-286, ACM Press, 1996.

